SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing1
نویسندگان
چکیده
PREMISE OF THE STUDY Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci. METHODS AND RESULTS Using Illumina next-generation sequencing, 54 million reads were collected from restriction enzyme-digested DNA libraries of a diversity of Gossypium taxa. Loci with one to three SNPs were discovered using the Stacks software package, yielding 25,529 new cotton SNP combinations, including those that are polymorphic at both interspecific and intraspecific levels. Frequencies of predicted dual-homozygous (aa/bb) marker polymorphisms ranged from 6.7-11.6% of total shared fragments in intraspecific comparisons and from 15.0-16.4% in interspecific comparisons. CONCLUSIONS This resource provides dual-homozygous (aa/bb) marker polymorphisms. Both in silico and experimental validation efforts demonstrated that these markers are enriched for single orthologous loci that are homozygous for alternative alleles.
منابع مشابه
Molecular Mapping of Restriction-Site Associated DNA Markers in Allotetraploid Upland Cotton
Upland cotton (Gossypium hirsutum L., 2n = 52, AADD) is an allotetraploid, therefore the discovery of single nucleotide polymorphism (SNP) markers is difficult. The recent emergence of genome complexity reduction technologies based on the next-generation sequencing (NGS) platform has greatly expedited SNP discovery in crops with highly repetitive and complex genomes. Here we applied restriction...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملAnalysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids
BACKGROUND Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were...
متن کاملComparative genetic mapping of allotetraploid cotton and its diploid progenitors
Allotetraploid cotton species (Gossypium) belong to a 1–2 million year old lineage that reunited diploid genomes that diverged from each other 5–10 million years ago. To characterize genome evolution in the diploids and allotetraploids, comparative RFLP mapping was used to construct genetic maps for the allotetraploids (AD genome; n = 26) and diploids (A and D genomes; n = 13). Comparisons amon...
متن کاملDifferential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium).
Levels and patterns of nucleotide diversity vary widely among lineages. Because allopolyploid species contain duplicated (homoeologous) genes, studies of nucleotide diversity at homoeologous loci may facilitate insight into the evolutionary dynamics of duplicated loci. In this study, we describe patterns of sequence diversity from an alcohol dehydrogenase homoeologous locus pair (AdhC) in allot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2015